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The ANN-GA approach to design optimization 
integrates two well-known computational 
technologies, artificial neural networks (AN%) and 
the genetic algorithm (GA), with a simple scheme for 
exploiting a network of common workstations to 
reduce the computational burden associated with 
applying formal optimization techniques to 
subsurface engineering problems. The greatest 
computational investment in a design project of the 
kind which will be described in this paper is in the 
simulation of physical processes needed to calculate 
the cost function. The ANN-GA methodology 
addresses this problem by training ANNs to stand in 
for the simulator during the course of a search directed 
by the GA. The ANNs are trained and tested from 
examples stored in a reusable knowledge base of 
representative simulations which relate variations in 
the design parameters to predicted outcomes for the 
particular engineering problem being studied. The 
maximum amount of information from each 
simulation is saved, subject to storage limitations. 
The creation of the knowledge base is itself a sizeable 
computational investment, one that pays off if it is 
used to train a variety of networks for different 
searches and/or for use in other contexts such as 
sensitivity analyses. A diagram of the components of 
the methodology is ‘given in Figure 1. Applications 
of the methodology have been reported in [l-3]. 

From the standpoint of the computational time 
devoted to simulation, the ANN-GA methodology 
converts a serial search into a parallel search. The 
cost function information required during the usual 
GA-driven serial search is provided by neural 
networks trained from information in the initial 
knowledge base. The knowledge base is created from 
representative simulations which, because they are 
independent of each other, are run in parallel by 
distributing them over a network of workstations. 
The effectiveness of the approach is dependent on the 
representativeness of the sample of simulations 
constituting the initial knowledge base. The current 

challenge is to ensure that this representativeness is 
adequate for the problem being studied. 
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Figure 1. Components of the ANN-GA approach 

2. TEST PROBLEM 

Figure 2 illustrates the kind of design problem 
for which the ANN-GA approach was developed, It 
shows a contour map in parts per billion (ppb) of 
groundwater contaminated by volatile organic 
compounds at an industrial site, overlaid by a set of 
prospective wells intended to clean up the 
contamination by means of pump-and-treat 
remediation. In this remedial strategy, contaminated 
water is pumped to the surface by extraction wells and 
treated to reduce contamination to acceptable levels. 
The goal of optimization for this type of problem is 
usually to fmd one or more combinations of wells 
that will at least contain and preferrably clean up the 
contamination at minimum cost or time. Although 
the number of well combinations is potentially 
infinite, it has been customary in groundwater 
optimization work to prespecify a grid of potentially 
good well locations and then formulate a 
combinatorial search to locate the most time- or cost- 
effective subset of those locations which meets 
remediation goals. 

Triangles mark the location of 30 prospective 
extraction wells. Their pumping statuses, on vs. off, 



are the only design variables in the problem. A 
well’s rate of pumping is tailored to the hydrogeology 

Figure 2. A groundwater remediation problem 

of its location, the larger triangles in the figure 
pumping at 50 gpm while the others pump at 20 
&pm. The time-span over which the success or 
failure of remediation is evaluated is 50 years. The 
X’s to the left of the figure indicate a fence-line of 
monitoring wells used to determine if the 
contamination is spreading toward the residential ama 
to the west of the contaminated site. 

The first knowledge base for this problem, 
referred to as Randoml, consisted of results from the 
simulation of 401 well patterns (301 for training plus 
100 for testing purposes) randomly sampled from a 
uniform distribution over the set of 30 possible 
wells. Both the number of wells in the pattern and 
the particular wells making up the pattern were 
randomly selected. The mean number of wells per 
pattern in the knowledge base was 12.72. The 
simulator used to predict the effects of pumping was 
the 2-D hybrid finite-element/finite-difference 
contaminant transport model SUTRA [4]. Data saved 
from each simulation included yearly reports of the 
amount and distribution of contaminant removed, the 
distribution of residual contamination, and the 
contamination levels at the key monitoring points. 
This information could be used to answer questions 
concerning either cost (e.g. “What is the cheapest way 
to accomplish remediaion goal X?“) or time (e.g. 
“What is the fastest way to accomplish remediation 
goal X?“). 

The management goal for this problem was to 

locate the lowest-cost well patterns which prevent the 
groundwater contamination from spreading beyond the 
fence-line of monitoring wells. A feed-forward neural 
network having 30 inputs (one for each of the 30 
wells in the problem) and one dichotomous output 
was trained from 301 patterns in the knowledge base 
to predict containment according to the following 
operational definition. The level of contamination 
predicted by the model at each monitoring well was 
checked yearly for the entire period of simulation. If 
the maximum concentration observed at these points 
remained at or below nine ppb, the pattern was said to 
contain the contamination. Containment at nine 
ppb is an easy goal to achieve, as long as cost-control 
is not an issue. So, 59% of the training patterns met 
the criterion for containment. 

The supervised learning backpropagation 
algorithm was used in training, employing a 
conjugate gradient technique to speed convergence and 
lessen the likelihood of instabilities and oscillations 
[5]. Parameters used in training included a fixed 
learning rate of .I and a sigmoid threshold function. 
Prior experience had shown that these networks were 
highly vulnerable to over-fitting; so instead of 
training to some convergence criterion, training was 
limited to a fixed number of iterations. Nine variant 
architectures, differing only in the number of nodes in 
their hidden layers, were trained and tested. The nine- 
node variant showed the highest levels of predictive 
accuracy on the 100 test cases, being 96% correct on 
the 69 cases that contained the contamination and 
100% correct on the 3 1 cases that failed to contain; 
consequently, it was selected for use in the search 
phase. Predictive accuracy is defined throughout this 
paper as the percentage of agreement between the 
ANN and SUTRA predictions of containment. 

The search was driven by a modified simple GA. 
The problem representation was the same as that used 
for the ANN’s input layer: a string of 30 locations, 
each coded as either on or off. Rank-based [6] rather 
than proportional selection was applied to maintain 
constant selective pressure throughout the search. 
Uniform crossover [7] was selected as most 
appropriate to the problem because physical adjacancy 
in the problem representation was not related to 
whether locations would cluster together into effective 
pumping patterns. Parameters which were held 
constant throughout all searches were the population 
size (loo), the cross-over probability (.9), the bias 
used for the rank-order selections (1 S), and the 
mutation rate (.OOl). The same 100 patterns used to 
test the ANNs served as the initial population. The 



fitness function was defmed as the sum of a patterns 
predicted ability to contain the contamination (l=Yes, 
O=No) and its installation and maintenance costs over 
50 years (resealed between 0 and 1 and reversed so that 
the cheaper the pattern, the higher the score). At 
every generation, the trained network (known as 
Randoml.HS) because it was created from the 
Random1 knowledge base and contained nine nodes in 
its hidden layer) was used to generate the containment 
predictions. A C-function generated the cost 
information. ’ 

Convergence to a single optimal solution is 
neither practical nor desirable for the kind of design 
problem being described here. Instead, diversity in 
the search was encouraged by keeping the crossover 
rate high, limiting the number of generations to 25, 
and saving off and analyzing the highest scorers fi+om 
every generation rather than focusing attention solely 
on the final generation. So, the solution set that 
resulted from each search contained at least patterns. 
Results from three separate searches, differing only in 
the seed used to initialize the pseudo-random number 
generator, were combined. After duplicates were 
eliminated, there were 99 well patterns, ranging in 
size from three to seven wells and costing from $70 
to $130 million, which met the definition of 
containment as predicted by Randoml.HB. (As a 
point of reference, if all 30 extraction wells were 
pumped for 50 years, the total cost would be $532 
million.) Because cost is heavily affected by 
pumping rate and wells daer in their rates, the 
number of wells alone does not dictate the cost; the 
particular combination of wells is also relevant. 

All 99 patterns were submitted to SUTRA for 
confirmation that they did, in fact, contain the 
contamination. Despite its high predictive accuracy 
on the 100 test examples, only 37.4% of the patterns 
which RandomlH9 had predicted would contain the 
contamination were confirmed to do so by SUTRA. 
A breakdown of errors by cost groups indicated that 
the ANN was particularly inaccurate on the lower-cost 
well combinations on which the search focuses in its 
fmal stages. 

4 e ALTEBNATIVE NETWORKS 

To further explore the nature of these predictive 
errors in the final stages of search and strategies for 
reducing them, alternative networks were trained and 
tested following the same procedures as for 
Randoml.H9 and evaluated according to two criteria:. 
I) how accurately they predicted containment on their 

own optimal sets (that is, the patterns that were 
generated in GA searches when the particular 
alternative network was supplying the predictiqns of 
containment), and 2) the absolute number of SUTRA- 
confiied very-low-cost patterns resulting from each 
search. 

In all cases, the optimal set was defined as all 
well patterns costing $130 million or less and 
predicted by the ANN to contain the contamination. 
The reason for examining the number of SUTRA- 
confirmed very-low-cost patterns, is to assess the 
“yield” of the strategy. For example, an ANN that 
raises its predictive accuracy by simply avoiding the 
very-low-cost regions of the search space has limited 
value compared to a less accurate ANN that still 
manages to yield a few confiied very-low-cost 
patterns. Results are shown m-the table below. 

Predictive 
Accuracy on 

Confilmed 
Patterns <= 

I Random1 .H9 37.4% (N= 99) 13 

I Random1 .H7 79.7% (N= 74) 13 

RandomlRW.H8 54.9% (N= 82) 16 

I Random2.Hl2 51.6% (N=l24) 33 

Random3 .H4 60.0% (N=120) 33 

The first alternative network to be evaluated was 
Random1 .H7, the second most accurate variant on the 
100 original test examples. This ANN showed far 
more robust final stage accuracy on the 74 patterns in 
its own optimal set. Unfortunately, there was no 
way to know in advance that this particular variant 
would be a strong performer. 

Three a priori strategies for increasing a 
network’s resistence to false positives were developed 
and tested. The first strategy was the least expensive, 
from a computational standpoint. New training and 
testing sets, designated as RandomlRW, were created 
out of the original Random1 by making three copies 
of any well pattern having 13 or fewer wells and only 
one copy of patterns having more than 13 wells. 
This trick biased the network’s weights in favor of the 
smaller-sized pattern subregion that would become 
more important as the search progressed and nquired 



no additional simulations. The second strategy 
consisted of doubling the number of training 
examples from 301 to 601 to create the Random2 
knowledge base, keeping the distribution of cases 
over the input parameter space the same as for 
Random 1. This strategy entailed 300 additional 
model runs. The loo-case testing set remained the 
same. The third strategy involved doubling the 
number of training and testing examples involving 23 
or fewer wells and dropping larger patterns out 
entirely to create the Random3 knowledge base. This 
strategy keeps the size of the knowledge base (301 
training examples, 100 test examples) the same as 
Random1 but concentrates the examples on the 
smaller-sized patterns which figure prominantly in 
cost-minimizing searches. 

The particular ANN chosen for evaluation in all 
three strategies was the hidden-node variant showing 
the highest accuracy on the appropriate initial test set. 
In all cases, test set accuracies exceeded 95%. All GA 
search procedures were the same as described for 
Random1 .H9. 

The most effective of the a priori strategies, 
judged both by performance on its own optimal set 
and its absolute yield, is Random3’s focused 
knowledge base. The reweighting scheme embodied 
in RandomIRW is extremely computationally cheap 
but less effective by both criteria. The tactic of 
Random2, simply increasing the number of training 
cases, has an absolute yield as high as Random3’s but 
less predictive accuracy and is probably not worth the 
extra simulations it requires. While Randoml.H7 is 
the winner on predictive accuracy, its low yield 
suggests that it gains its accuracy by avoiding 
difficult regions of the search space. 

5. coNcLusrbNs 

Discussions of training factors in supervised 
learning algorithms tend to take the more-is-better 
approach to estimating the number of training cases. 
The results described in this paper suggest that the 
distribution of cases is as important as absolute 
numbers. Furthermore, the utility of an ANN must 
be evaluated not only in terms of test-set 
generalization but ultimate performance measures 
such as final-stage accuracy and yield. 
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